Mathematics Calculation Policy

This policy is a statement of the aims, principles and strategies for teaching and learning of calculation strategies in Mathematics. At Elstow School we firmly believe in a mastery approach and use resources published by White Rose and NECTEM who are leaders in the field of Mastery in Mathematics. This policy ensures that calculation is taught consistently across the school and that all staff are familiar with the most precise and effective methods including use of resources and manipulatives. The methods build understanding and confidence through learning in small steps. This policy is also designed to help parents and carers support children's learning by providing an explanation of the methods used, in order for them to feel confident to assist in their children's learning. The policy shows the progression of skills, knowledge and layout for written methods, set out in the following strands: addition \& subtraction; multiplication \& division.

We follow a Concrete - Pictorial - Abstract model (CPA) which starts with a mathematical concept demonstrated through manipulatives (cubes, beads, counters) and then a pictorial representations (such as bar models or arrays) which is used simultaneously with the concrete. This ensures a full understanding of the concept, before linking it to the abstract form (operation signs, equations). We recognise the importance of the use of correct and precise mathematical language and believe that all children are capable of learning mathematical terms. Mental calculation methods are complementary to written methods and should not be seen as separate from them. Children are taught how to mentally calculate efficiently and with accuracy. A demonstration of mastery is a reflection of child's ability to know whether a calculation can be done mentally or requires a written method. The steps in the policy below are intended to support understanding of how to calculate and how these are taught at Elstow.

Addition

Objective and Strategies	Concrete	Pictorial	Abstract including mental strategy.
Recall and use addition and subtraction facts for all numbers up to and within 10. Having a secure recall of compliments to 10 or number bonds is an essential skill forming the basis for further calculation.	$10=1+9 \quad 2+8 \quad 3+7 \quad 4+6$ Introduce idea of 2 parts combining to make a whole amount.	Drawing a dot for every cube, then removing the cubes. Reinforce idea of 2 parts combining to make a whole amount using a bar model.	$\begin{aligned} & 1+9=10 \\ & 9+1=10 \\ & 10-1=9 \\ & 10-9=1 \end{aligned}$ Learn the compliments in sets of 4 so that the inverse facts become embedded learning.

Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar. \square 1	Use the part-part whole diagram to move into the abstract. $\begin{aligned} & 4+3=7 \\ & 10=6+4 \end{aligned}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number one by one to find the answer.	$12+5=17$	$5+12=17$ Elephant and mouse rule: Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10 .	$6+5=11$ Start with the larger number and use the smaller number to make 10 .	Use pictures or a number line. Regroup or partition the smaller number to make 10 . $9+5=14$ 14 4	$7+4=11$ If I am at seven, how many more do I need to make 10 ? How many more do I add on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10 .	$\begin{aligned} 4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remaining number.

Subtraction

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Taking away ones \& Use physical objects, such as counters and cubes to show how objects can be taken away.

$$
6-2=4
$$ \& Cross out drawn objects to show what has been taken away.

$$
15-3=12
$$ \& \[

$$
\begin{aligned}
& 8-2=6 \\
& 18-3=15 \\
& 20=23-3 \\
& 17-\square=15
\end{aligned}
$$
\]

\hline Counting back \& | Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4$ |
| :--- |
| Use counters and move them away from the group as you take them away counting backwards as you go. | \& | Count back on a number line or number track |
| :--- |
| Start at the bigger number and count back the smaller number showing the jumps on the number line. |
| This can progress all the way to counting back using two 2 digit numbers, by partitioning into tends and ones and counting back each ten, then the ones. | \& | Put 13 in your head, count back 4. What number are you at? Use your fingers to help. |
| :--- |
| Don't count the number you are starting on as your first number. |

\hline
\end{tabular}

Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at I3. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?
Column method without regrouping	Use Base 10 to make the bigger number then take the smaller number away.		$\begin{gathered} 47-24=23 \\ -20+7 \\ -\frac{20+3}{20+3} \\ \hline \end{gathered}$ This will lead to a secure understadning of place value in written column subtraction.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling			
	Use practical activities to show what it $\begin{aligned} & \text { mens to double a }\end{aligned}$	Draw pictures to show how to double a number.	Partition a number and then double each part before recombining back together.
Support understanding of 'the same again'.		$\begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	$\text { Dauble } 16$
	$\text { double 4 is } 8$ double 4 $4 \times 2=8$		
	Use symmerry		

Counting in
multiples

Repeated
addition
It is fine to introduce
the concept of
multiples of a number'
as repeated addition of
that number, but this is
only one way of looking
at multiplication and
only applies to positive
whole numbers.

Grid Method

Misconceptions

 with place value can be avoided by using Base 10 and place value counters before numbers.Show the link with arrays to first introduce the grid method.

4 rows of
10
4 rows of 3

Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

$$
\frac{\text { Calculations }}{4 \times 126}
$$

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Then you have your answer.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

x	30	5
7	210	35

$\mathbf{2 1 0 + 3 5 = 2 4 5}$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

Division

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Sharing objects into groups \& I have 10 cubes, can you share them equally in 2 groups? \& Children use pictures or shapes to share quantities. \& Share 9 buns between three people.
$$
=4{ }^{9} \div 3=3
$$

\hline Division as grouping \& \begin{tabular}{l}
Divide quantities into equal groups.

Use cubes, counters, objects or place value counters to aid understanding.

$$
96 \div 3=32
$$

 \&

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

$$
\begin{aligned}
& 20 \div 5=? \\
& 5 \times ?=20
\end{aligned}
$$

 \&

$$
28 \div 7=4
$$

Divide 28 into 7 groups. How many are in each group?
\end{tabular}

\hline
\end{tabular}

Long division	Use Base IO to make the dividend. Can you make a perfect ractangle with the Base 10 ? denominations for smaller ones. Lay the base 10 out in a rectangle with the divisor as the width. Draw in a line next to the divisor.	When you remove the Base 10, you can clearly see the bus stop layout. $\begin{aligned} & 134 \div 11=12^{r 2} \\ & (12 \times 11)+2=134 \end{aligned}$ Pupils then check using the inverse. Always engourage pupils to write a WIK box (What I know) in multiples of the divisor to help before long division. This helps them to estimate an answer and spot errors more easily. $1 7 \longdiv { 8 1 7 7 }$ WIK $\begin{aligned} & 1 \times 17=17 \\ & 2 \times 17=34 \quad 20 \times 17=340 \\ & 3 \times 17=51 \\ & 4 \times 17=68 \\ & 5 \times 17=85 \\ & 6 \times 17=102 \\ & 7 \times 17=119 \\ & 18 \times 17=136 \end{aligned}$

